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Known similarity solutions of the shallow-water equations representing the motion 
of constant-volume gravity currents are studied in both plane and axisymmetric 
geometries. It is found that these solutions are linearly stable to small correspondingly 
symmetric perturbations and that they constitute the large-time limits of the 
solutions of the initial-value problem. Furthermore, the analysis reveals that the 
similarity solution is approached in an oscillatory manner. Two initial-value problems 
are solved numerically using finite differences and in each case the approach to the 
similarity solution is compared with the analytic predictions. 

1. Introduction 
Gravity currents, which consist of fluid of one density flowing under the influence 

of gravity into fluid of another density, occur in many natural and industrial 
situations. Several examples of gravity currents in the atmosphere and the ocean are 
described in the recent review article by Simpson (1982). One example of current 
interest is when an industrial storage tank containing a heavier-than-air gas suddenly 
burst and releases its contents into the atmosphere. Recently the UK Health & Safety 
Executive has supervised a series of field experiments, McQuaid (1984), that 
simulates such an accident. The storage tank in the field experiments was a cylinder 
of circular cross-section with walls made of plastic sheeting. The gas was released by 
rapidly pulling the sidewalls to the ground with elastic cords. The released gas slumps 
to the ground producing a gravity current that spreads horizontally. For these types 
of accidents, particularly if the gas is hazardous, it is important to be able to estimate 
how rapidly the gravity current spreads over the ground and how this spreading rate 
is affected by the release conditions. 

Theories for the spreading rate of gravity currents owing to the release of a fixed 
volume of fluid have been proposed by Fay (1969), Fannelop & Waldman (1972) and 
Hoult (1972). All these theories assume that the buoyancy force driving the current 
is initially balanced by the inertia. This assumption leads to the result that the length 
(or radius in axisymmetric flow) increases as tzl(a+n), where n = 0 and n = 1 for plane 
and axisymmetric flow respectively, and t is the time after release. Fay (1969) derives 
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this by balancing the force estimates in the current while Fannelop & Waldman (1972) 
and Hoult ( 1972) deduce this via similarity solutions of the depth-averaged shallow- 
water equations. 

In  the recent laboratory experiments of Huppert & Simpson (1980) and Rottman 
& Simpson ( 1983,1984) gravity currents were produced in both plane and axisymmetric 
geometries by releasing fixed volumes of salt water in channels filled with fresh water. 
The results of these experiments show that initially the rate of advance of the gravity 
current is a strong function of the release conditions, but eventually, if the current 
does not become so thin that viscous effects become comparable with the inertia of 
the current, the rate of advance of the current approaches the theoretical result 
referred to above. 

I n  the present paper, we take a closer look a t  the similarity solutions originally 
derived by Fannelop & Waldman (1972) and Hoult (1972). We want to confirm 
mathematically that these similarity solutions are the large-time limits of some class 
of initial-value problems associated with the shallow-water equations. I n  addition we 
want to obtain some indication of how rapidly these similarity solutions are 
approached and how sensitive this rate of approach is to the initial conditions. 

We do this in two ways. First we construct a large-time asymptotic expansion with 
the similarity solution as the leading term - a procedure which also serves as a linear 
stability analysis for symmctric disturbances. As we shall see later, this results in a 
linear eigenvalue problem possessing an infinite discrete spectrum of eigenvalues { A i } .  
These determine the rate a t  which the similarity solution is approached as t + 00 and, 
since Re (A,) < 0 for all Ai, confirms linear stability. As a second confirmation of the 
large-time behaviour, we solve numerically the ‘ dam-break ’ initial-value problem for 
both plane and axisymmetric gcomctries. An important facet of our work is the 
subsequent comparison between the numerical solutions and the analytic predictions. 

The problem is formulated in $2. The similarity solutions are written down in $3 
and the linear eigenvalue problem associated with the large-time expansion is derived 
and solved in $4. The numerical methods used to solve the ‘dam-break’ problem are 
outlined and the results of the computations are described and compared with the 
asymptotic results in $5. The results are summarized and further discussed in $6. 

2. Formulation of the problem 
We consider the plane and axisymmetric motion under the influence of gravity of 

a finite volume of fluid with density p that  is released from rest on the horizontal 
bottom boundary of another fluid with slightly lower density pa. The two fluids are 
assumed to be incompressible and miscible (so that surface-tension effects are 
unimportant) and any mixing between them is neglected. A sketch of the flow defining 
the nomenclature and coordinate system is shown in figure 1 .  

If the thickness of the heavy-fluid layer is small compared with its length and with 
the depth of the surrounding fluid and if viscous effects are unimportant, then the 
motion of the heavy fluid is described approximately by the shallow-water equations, 
as derived (for example) by Penney & Thornhill (1952) : 

au au ah 
-+u-++’-=0. 
at ax ax 
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0 

XI - 
FIQURE 1. Schematic illustration of a heavy fluid with density p spreading a t  the base of a lighter 

fluid of density pa. The position of the front of the spreading current is denoted by xr(t). 

Here h(x, t)  is the thickness of the heavy fluid, u(x ,  t)  is the depth-averaged horizontal 
fluid speed and g’ = g(p-pa)/pa is the reduced acceleration due to gravity. Note that 
we have used the Boussinesq approximation to replace p in the denominator of this 
expression for g’ by pa. The independent variable x represents the horizontal 
coordinate in plane flow and the radial coordinate in axisymmetric flow. The 
independent variable t represents the time, which is zero when the heavy fluid is 
released. The parameter n is zero for plane flow and unity for axisymmetric flow. 

Equations (2.1) and (2.2) are hyperbolic and can be written in the characteristic 
form 

du dh uh 
dt- dt-  x h -+c -+w - = 0, 

along the characteristic curves specified by 

dx 
- = U f C ,  
dt 

where c = (g’h)k 

We impose the boundary conditions 

u(0, t) = 0, (2.5) 

U@f, t) = 4, (2.6) 

BBg’h(q, t) = xi, (2.7) 

where the function x,(t) denotes the position of the front of the heavy fluid and k,(t) 
is its speed. Boundary condition (2.5) implies that no fluid enters the current from 
the plane or axis of symmetry at  2 = 0, and (2.6) implies that no fluid enters the 
current at the front. Boundary condition (2.7) represents a quasi-steady balance 
between the buoyancy force driving the current front and the drag on the front due 
to its acceleration of the surrounding fluid. The buoyancy force driving the current 
front is proportional to g@-pa) h;, where h, = h(x,, t), and the drag due to the 
surrounding fluid is proportional to pa h, xi. If the acceleration of the front is small, 
then these two forces must approximately balance. Equating these two forces, we 
obtain (2.7), where /3 is a function of the constants of proportionality. It is found 
experimentally that /3 is about unity for currents with small values of @-p,)/p,. 
This front condition is necessary in our formulation because it is observed that 
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vertical accelerations are not small at the current front and therefore the shallow-water 
equations are invalid there. Boundary conditions (2.6) and (2.7) are analogous to 
shock conditions in gasdynamics. For gravity-current flows, these boundary 
conditions have been used by all the investigators mentioned in the introduction. 

Integrating (2.1) with respect to x over [0, x,(t)] and using (2.5) and (2.6), we obtain 
the integral invariant q w  jo h(z,  t )  ( 2 7 ~ ~ ) ~  dx = &, (2.8) 

where & is the volume of the heavy fluid (volume per unit width for plane flow). This 
shows that the volume of the heavy fluid is conserved. 

To complete the problem, we need to specify the initial conditions. In general, for 
the problems in which we are interested here 

with 

7 o < x < x 0 7  

2, < x, h(x, 0) = 

u(x, 0) = 0, 

x,(O) = 2,. 

(2.10) 

(2.1 1)  

In $5,  we consider the particular initial conditions for which h,(x) = h, (a constant) 
in both plane and axisymmetric geometries. 

3. Similarity solutions 
Inspection of (2.1) to (2.11) shows that h(x, t )  can be replaced by g’h(z ,  t ) .  Then 

the five governing parameters in the problem are t ,  (g’&), x, x,, and B. Since there 
are two independent dimensions (length and time) the problem can be expressed in 
terms of three dimensionless parameters, which we choose to be 

E = x(g’&)-1/(3+n) t-2/(3+n) , 7 = t(g’&)ix;(3+n)/2 (3.1, 3.2) 

and 8. The parameter E may be thought of as a dimensionless space variable and 7 

as a dimensionless time variable, scaled by a time characteristic of the initial 
conditions. The dependent variables may then be expressed as : 

where H ,  U and A are dimensionless functions. 
We now substitute (3.3)-(3.5) into (2.1) and (2.2) and seek solutions for H ,  U and 

A that are independent of 7.  If such solutions exist that satisfy the boundary 
conditions (2.5)-(2.7) then the problem is said to possess a similarity (or self-similar) 
solution. This solution will not, in general, satisfy the initial conditions but, if stable 
to small disturbances, we expect it to be the limiting form as 7+ 00 of the solution 
of the initial-value problem for a wide class of initial conditions. We note from (3.5) 
that the similarity solution has the observed large-time spreading behaviour. 
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The similarity solutions are well known from gas dynamics and can be written, with 
'7 = E/A,, as 

4 7 )  = A,, (3.6) 

with 

U = U , = -  2AO '7 
n + 3  ' 

(3.9) 

In the gas-dynamic context the family of similarity solutions of which (3.7) and (3.8) 
are a special case were first studied by Guderley (1942). This powerful phase-plane 
approach was further developed by Courant BE Friedrichs (1948) and Sedov (1956) 
with refinements by many subsequent authors. Using the phase-plane method it is 
not difficult to show that (3.6)-(3.9) with (3.3)-(3.5) constitute for 0 < /3 < 2/(n+ 1); 
the unique similarity solution to (2.1), (2.2), (2.5)-(2.7) with A, determined by the 
mass-invariance condition (2.8) to give 

(n+ 1)  ( n + 3 ) 3 p  i/(n+3) 

= ( (2x)"[4(n+3)-2(n+l)p]  
(3.10) 

For B 2 2/(n+ l)t  a similarity solution satisfying the boundary and mass invariance 
conditions does not exist. The above solution is, written in a necessarily different form, 
identical with that of Hoult (1972). 

4. Approach to self-similarity 
We now consider how the similarity solutions are approached as 7+ 00. For this 

purpose, we investigate the possibility that H ( q ,  7 ) ,  U('7,7) and A(7) can be expanded 
in the form 

(4.1) H ( 7 , 7 )  = H,(r) +c 7h Hj(7), 
I 

4 7 )  = A ,  1+c 7 q } ,  I ,  (4.3) 

in the limit 7+ c o , ~  = O(1). The functions H,, U, and the parameter A ,  are similarity 
solutions (3.7), (3.8) and (3.10). 

The choice of power-law perturbations is the only possible one, consistent with 
related problems in other fields (see Stewartson & Thompson 1968), so a necessary 
condition for the expansions (4.1)-(4.3) to exist is that Re (p,) < 0. We will prove this 
result later in the paper. The correction terms to the similarity solutions that arise 
in (4.1)-(4.3) are of three types. The first, the so-called linear perturbations, are found 
by solving a linear eigenvalue problem for p,. We denote the p, determined in this 
way by yI. The second type are generated by the nonlinear self-interactions of the 
first type and satisfy second-order linear boundary-value problems. A third type 
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may exist when the power of r in an interaction term equals one of the y,; in this 
event logarithms may be involved. In  this paper we concern ourseivev with the first 
type of perturbation and the values {y,} are called the eigenvalues of the similarity 
solutions. 

It turns out that the y, form a discrete spectrum in the complex plane, occurring 
in conjugate pairs. Once the sequence {y,} has been found, then the eigenvalue with 
the largest real part constitutes the dominant correction to the similarity solution, 
while all possible products generate the interaction terms. Finally, if Re (7,) < 0, 
which as we shall see is true, then the similarity solution is linearly stable with respect 
to  small symmetric disturbances. 

We formally substitute (4.1) and (4.2) into equations (2.1), using (3.3) and (3.4), 
and equate powers of T Y ~ .  The resulting equation for H,(q)  can be written 

where H,(q) and U,(q) are related by 

and primes denote differentiation with respect to q.  Substituting (4.1)-(4.3) into the 
boundary conditions (2.5)-(2.7), using (3.3)-(3.5), we find that to  O(TV) (2.5) gives 

Hi(0 )  = 0, (4.6) 

while (2.6) gives 
(n+3)’ Hi(1) A -- 

j 
- 

Ai[(n+3) y,-(n-l)] (n+3) y,’ 
(4.7) 

and (2.7) yields 

[2(n+3)~,+4-@+ 1 ) p ]  H~(l)-~(n+3)$yj[(n-ll)-yj(n+3)] Hj(1) = 0. (4.8) 

Since the equations and boundary conditions (4.4)-(4.8) are linear and homogeneous 
then the solution will determine y, together with H,, U, and A, to within an arbitrary 
constant factor. 

A t  this stage we can show that Re (7,) < 0. Taking the complex conjugate of (4.4), 
multiplying by 9,(n+3)/P[(n- 1)- y,(n+ 3)] H,, integrating over [0, I] and using 
(4.6) and (4.8), we obtain a quadratic expression for each y, with coefficients that are 
real and positive for any complex y, (for n = 0 or 1). To be specific, we find that 

(4.11) 
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We therefore conclude that Re (7,) < 0, and that the similarity solutions are stable 
to linear perturbations. 

To proceed further with the solution, we note that (4.4) is easily transformed into 
the hypergeometric equation, and the solution that satisfies (4.6) is 

where 

The K, are arbitrary complex constants and F(a, b ;  c ;  z )  is the hypergeometric 
function. Substituting (4.12) into (4.8), we obtain the equation for the eigenvalues, 

F a, a ;  f (n+ 1); p*) 4 
viz ( 

+ [2yj(n+3)+4-p(nf1) 2(n+ 1) 
a + l ,  a ;  t(n+3);  /P e) 4 = 0. (4.15) 

The transformation to argument agZ(n+ 1) has been made so that the hypergeometric 
functions can be computed using their series representation within their radii of 
convergence, since 0 < p < 4/(n+ 1). The eigenvalues, occurring in conjugate pairs, 
that satisfy this equation must be determined numerically. The associated eigen- 
functions are given by (4.12) with the K, remaining arbitrary and determined in some 
way by the initial conditions. 

Finally, it is interesting and profitable to solve the eigenvalue problem using the 
Liouvilldreen (or WKB) method, ostensibly a large-( y I solution. The straight- 
forward solution is singular, but this difficulty can be overcome using matched 
expansions. The result of this calculation gives the eigenvalues 

with m = +1, f 2 ,  ... for n = 0, and 

(4.16) 

(4.17) 

with m = +1, +2, ... for n = 1. 
The results of the eigenvalue calculations are shown in tables 1 and 2. In table 1 

the real and imaginary pa+ of the first eleven eigenvalues, when conjugates are 
included, are listed for n = 0 and /3 = 0.6 (0.2) 1.4, together with the Liouvilldreen 
result. The imaginary-part differences clearly indicate the utility of this result in 
spacing the eigenvalues along Re (ym) = -0.5 for all but the first few values. In  
table 2 we display the corresponding information for n = 1, = 0.4(0.2) 1.2. The 
increasing accuracy of the Liouville-Green result for Re ( y )  and Im ( y )  as Im ( y )  
increase is evident. The Re (ym) are weak functions of m and /3 and in all cases shown 
in the table are located at about Re (ym) z -0.2. Since Re (ym) is independent of m 
for n = 0 and weakly dependent on m for n = 1, we conclude that the asymptotic 
rate of approach to similarity is fairly insensitive to the initial conditions. The 
eigenvalue y = - 1, which occurs for both values of n, has a simple interpretation. 
Since the similarity solutions have an arbitrary time origin, 7 can be replaced by 
71 + r0, where 70 is a constant. If the similarity solutions are then expanded for large 
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~ 

2 

X I X O  

FIQURE 2. The computed height profile h ( r ,  t )  of the heavy fluid for several times just after 
release for the ‘dam-break’ problem: (a) plane (n = 0), (a) axisymmetric (n = 1). 

71, the original similarity solutions are obtained as functions of 71 along with a 
correction of o(7;’). 

5. Numerical solutions 
In this section we describe the numerical solutions of two initial-value problems 

associated with (2.1) and (2.2). The problems we consider have the initial conditions 
given by (2.9)-(2.11) with h,(z) = h,, a constant, for both plane and axisymmetric 
flow. These are the initial conditions for the classical ‘dam-break’ problem, as 
described by Stoker (1957), but the front boundary condition (2.7) makes our problem 
different from the classical one. Numerical solutions of the ‘dam-break’ problem, in 
which the current depth vanishes at the front, are described by Penney & Thornhill 
(1952), for both plane and axisymmetric flows. 

Rottman & Simpson used the method of characteristics to solve the plane-flow 
problem (1983) and the axisymmetric problem (1984) posed here. The solutions they 
obtained for the height h(x,  t )  of the heavy fluid for early times after release are shown 
in figure 2. The solutions for the two geometries are significantly different, somewhat 
surprisingly since the similarity solutions are almost identical (apart from a time- 
dependent scaling factor). The plane solution shows the mound of heavy fluid 
collapsing almost as a rectangular box, whereas the axisymmetric solution shows that 
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most of the heavy fluid is, by t x 4x,/(g’h,)t, concentrated a t  the leading edge of 
the spreading current. In fact, a backward-facing hydraulic jump forms just behind 
the front at t x 2x,/(g’h,)k and propagates back towards the axis of symmetry. 

For large times after release the current becomes very thin and any numerical 
method would become prone to round-off error. Therefore, to determine the large-time 
behaviour of these problems and to compare the behaviour with the similarity 
solutions, we found it more convenient to reformulate the problem in terms of the 
dependent variables Hand U defined by (3.3) and (3 .4)  and the independent variables 
7, defined by (3 .7) ,  and 

1 
T = - log7, (5.1) 

A0 

where 7 is given by (3 .2)  and A, by (3.18). This choice of variables keeps the 
independent variable within reasonable ranges while the dependent variables can be 
compared directly with the similarity forms. The governing equations (2 .1)  and (2 .2) ,  
now become 

aH aH a 0  OH -+ 8 - + H - + n  - = 0, (5.2) 
aT a7 a7 7 

(5.3) 

where 
o= u-u,, (5.4) 

and U, is the similarity solution given by (3.15). These hyperbolic equations can be 
written in the Characteristic form 

d 0  dH OH UOH 
d t -  dT- 7 7 

H -+ C -+ nC - = [+(n - 1 ) O+i(n + 1 )  U,] - , 

along the characteristic curves specified by 

*= 0&C,  
dT 

where C = Hi. The boundary conditions (2.5)-(2.7) become 

B(0, T) = 0, 

(5 .5)  

where 

(5.10) 

is the value of 7 at the front. 
We used an explicit finite-difference scheme to solve (5.2) and (5.3) with boundary 

conditions (5.7)-(5.9). Specifically, a Lax-Wendroff method was used along with a 

flux-correction technique was necessary to compute accurately the hydraulic jump 
that occurs in the axisymmetric problem. The values of the dependent variables at 
the boundaries 7 = 0 and 7 = qf(T) as well as the value of yf(T) were determined from 
(5.7)-(5.9) and from solving first-order finite-difference representations of (5 .5)  along 

I 
I flux-corrected transport algorithm as described by Book, Boris & Hain (1975). The 
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FIGURE 3. The computed height profiles H(7 ,  T )  for several values of the dimensionless time T after 
release for the ‘dam-break’ problem: (a) plane (n = 0) ,  ( b )  axisymmetric (n = 1). The dashed curve 
in each plot is the similarity solution H,,(q). 

backward- and forward-moving characteristic lines, respectively. As initial conditions, 
we used the results of the characteristic calculations by Rottman & Simpson (1983, 
1984). 

Results of the numerical calculations for the case with /? = 1 are shown in figures 3 
and 4. Figures 3(u)  and 3(b) are plots of H(q,  T) at  several values of T for n = 0 
and 1, respectively. Figures 4(u )  and 4 ( b )  are plots of the front position r,(T) as a 
function of T for the two geometries. In both figures the similarity solutions are shown 
as dashed curves. It is clearly seen that the numerical results oscillate in time as they 
approach the similarity solution with the amplitudes of the oscillations decreasing 
rapidly with T. By the time T x 6 (for n = 0) and T x 10 (for n = 1 )  the numerical 
solutions are equal to the similarity solution to within the accuracy of the calculation. 

This damped-oscillatory approach to the similarity solution is anticipated by the 
analytical results obtained in $4. For example, from (4.3) and (5.10) it is seen that, 
in terms of the transformed time T, 
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FIGURE 4. The computed transformed front position qf(T)  for the 'dam-break' problem: (a) plane 
(n = 0) ,  (b )  axisymmetric (n = 1) .  The dashed line in each plot is k ( T )  = 1 ,  the value predicted by 
the similarity solution. 

since the y, always appear in conjugate pairs. The coefficients a, and b, are real 
constants that depend in some undetermined way on the initial conditions. Thus, the 
analysis indicates that the solution eventually oscillates about the similarity result, 
q,(T) = 1, with angular frequency Im (yl)Ao, where y1 is the eigenvalue with the 
smallest value of I Re (yl) I. Unfortunately we cannot make a direct comparison 
between the numerical and analytical results because the a, and b, are unknown and 
the Re ( y j )  are equal (for n = 0) or nearly equal (for n = 1). Nevertheless, the 
numerical results confirm that the similarity solution is approached for large times 
and that the approach occurs in an oscillatory fashion in time. 

6. Concluding remarks 
We have shown that the known similarity solutions of the shallow-water equations 

representing constant-volume gravity currents in both plane and axisymmetric 
geometries are unique and respectively linearly stable to small plane and axisymmetric 
perturbations. Therefore we conclude that these solutions are the large-time limits 
of the solutions of the initial-value problem. The analysis also reveals that the 
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similarity solutions are approached in an oscillatory manner with amplitudes that 
decay asymptotically as t-4 in plane flows and t-7 in axisymmetric flows, where 
y x 0.2 (although y is a weak function of mode number and /3) indicating that the 
asymptotic rate of approach to similarity is fairly insensitive to  the initial conditions. 
We solved two particular initial-value problems numerically and, although i t  is 
impossible to  compare directly the quantitative results of these calculations with our 
analysis, the qualitative aspects compare very well. 

The laboratory experiments of Huppert & Simpson (1980) and Rottman & Simpson 
(1983,1984) clearly show that the length (or radius) of gravity currents resulting from 
fixed-volume releases eventually increase as t2/ (3+n) as predicted by similarity theory, 
if the initial conditions are such that the self-similar behaviour is exhibited before 
viscous effects become important. Unfortunately, it is very difficult t o  measure 
experimentally the details of the approach to self-similar behaviour. The predicted 
oscillations about the self-similar solutions are too small to  be detected in the 
laboratory unless very careful measurements are made. The most careful laboratory 
measurements of gravity-current spreading rates have been made for plane flow very 
recently by Emblem, Krogstad & Fannelrap (1984). Their measurements show a small 
oscillation of the gravity-current front velocity about the similarity solution, but the 
measurements are not in sufficient detail to be compared quantitatively with our 
asymptotic theory. 

Viscous effects become important when they become comparable with the inertia 
of the current. By comparing order-of-magnitude estimates of these two forces 
for gravity currents propagating over a horizontal surface, Huppert (1982) esti- 
mates the time after release when viscous effects become important as 
t ,  - [Q4/g’2(1+n)v(3+n) 1 1’(7+5n), where v is the kinematic viscosity of the fluid in the 
current. After this time the motion of the current is governed by a balance between 
buoyancy and viscous forces. The similarity solutions discussed in the present paper 
may be called intermediate asymptotics in the sense that they are valid for times large 
compared with the characteristic time 7 but small compared with the viscous time 
t,. For choices of the initial conditions such that T and t ,  are comparable, the 
self-similar behaviour we have described here will not be observed. 

The approximate equations of motion that are valid during the viscous-buoyancy 
regime of the flow are those of lubrication theory. Huppert (1982) has already 
considered this problem, and has derived, following Barenblatt ( 1952), the appropriate 
similarity solutions that are valid for times large compared with t , .  The similarity 
solutions show that the length (or radius) of viscous gravity currents resulting from 
fixed-volume releases increase as t1 / (5+3n) ,  which is slower than the inertia-buoyancy 
spreading rate. The rate of approach to the viscous-buoyancy similarity solutions 
can be obtained from the results of Grundy & McLaughlin (1982), who considered 
the same mathematical problem in a slightly different physical context. Their 
calculations show that perturbation to the viscous-buoyancy similarity solutions 
decay as t-’ for both plane and axisymmetric geometries. 
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